TOURMALINE INVESTOR DAY

December 10, 2024

Disclaimer

The material in this presentation regarding Tourmaline Bio, Inc. ("we," "us" or the "Company") is for informational purposes only. This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 that involve substantial risks and uncertainties. All statements, other than statements of historical facts, contained in this presentation, including statements regarding the timing of initiation, progress and results of the Company's current and future preclinical and clinical trials for its product candidates, including pacibekitug (also referred to as TOUR006); the therapeutic potential of IL-6 inhibition, including by pacibekitug; the timing and likelihood of seeking regulatory approval for the Company's product candidates, including pacibekitug; the Company's ability to achieve planned milestones; the competitive landscape and potential market for the Company's product candidates; the unmet need in the Company's target indications and the potential for pacibekitug to address such unmet need; and the Company's estimates regarding expenses, future revenue, capital requirements, cash runway and needs for additional financing. The words "may," "will," "should," "expects," "intends," "plans," "anticipates," "believes," "estimates," "predicts," "potential," "continue," and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. The Company may not actually achieve the plans, intentions, or expectations disclosed in these forward-looking statements, and you should not place undue reliance on these forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in these forward-looking statements. Many factors may cause differences between current expectations and actual results, including, but not limited to, unexpected safety or efficacy data observed during preclinical or clinical studies, clinical site activation rates or clinical trial enrollment rates that are lower than expected, changes in the regulatory environment, changes in expected or existing competition, unexpected litigation or other disputes, and other risks and uncertainties, including those described in the section titled "Risk Factors" in the Company's most recent filings with the Securities and Exchange Commission. The forward-looking statements included in this presentation represent the Company's views as of the date of this presentation. The Company undertakes no obligation to update the information contained in this presentation to reflect new events or circumstances, except as required by law.

In addition, certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of any information obtained from third-party sources. In addition, all of the market data included in this presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while we believe our own internal research is reliable, such research has not been verified by any independent source.

This presentation contains trademarks, services marks, trade names and copyrights of the Company and other companies, which are the property of their respective owners. The use or display of third parties' trademarks, service marks, trade name or products in this presentation is not intended to, and does not, imply a relationship with the Company, or an endorsement of sponsorship by the Company. Solely for convenience, the trademarks, service marks and trade names referred to in this presentation may appear without the ®, TM or SM symbols, but such references are not intended to indicate, in any way, that the Company will not assert, to the fullest extent under applicable law, their rights or the right of the applicable licensor to these trademarks, service marks and trade name.

Agenda

Carrying pacibekitug momentum into 2025	Sandeep Kulkarni, MD Co-Founder & CEO
Addressing residual inflammatory risk in CV diseases	Marc P. Bonaca, MD, MPH University of Colorado CPC Clinical Research
Pioneering the next frontier in CV with IL-6 inhibition	Emil deGoma, MD SVP, Medical Research
Pacibekitug's practice-changing potential in CV	Gerhard Hagn SVP, Head of Commercial & BD
Confirming pacibekitug's best-in-disease opportunity in TED	Gerhard Hagn SVP, Head of Commercial & BD
Q&A	

From company creation to two high-value, distinct opportunities in less than three years

Pacibekitug

2022

Company

2023

2024

- ✓ Pacibekitug licensed from Pfizer in May 2022
- ✓ Go-public transaction in October 2023
- ✓ Follow-on equity offering in January 2024
- ✓ 70+ person company built with significant experience in developing and commercializing mAb
- ✓ \$426M in total financing proceeds raised to date; cash and investments of \$314M as of 9/30/24

- \checkmark 2 IND applications cleared
- ✓ GMP clinical material produced
- World-class Cardiovascular Scientific Advisory Board advising Tourmaline
- Phase 2 TRANQUILITY trial in cardiovascular inflammation ongoing; topline data expected in Q2 2025
- Pivotal Phase 2b spiriTED trial in thyroid eye disease ongoing; topline data expected in H2 2025

We plan to deliver two potentially transformational readouts in 2025

- Pending success, program will be Phase 3-ready in ASCVD (as previously aligned with FDA)
- Potentially transformative value for millions of CV patients may translate into multi-billion-dollar peak revenue opportunity

- TED represents an independent shot on goal
- Pending success, pacibekitug has best-in-disease and blockbuster potential

TRANQUILITY over-enrolled with 143 patients in just 7 months

- Underscores enthusiasm to address IL-6-driven cardiovascular inflammation
- Goal is to show rapid and robust hs-CRP reduction through quarterly SC injections

Tourmaline Bio Highlights Cardiovascular Inflammation Focus and Announces Key Clinical and Strategic Updates at Investor Day

December 10, 2024 8:30 ET | Source: Tourmaline Bio, Inc.

- Phase 2 TRANQUILITY trial surpasses enrollment target, with 143 total patients enrolled; topline data expected in second quarter of 2025 -

– Deepak L. Bhatt, MD, MPH, MBA and Dipender Gill, MD, PhD join Cardiovascular Scientific Advisory Board –

- Company nominates abdominal aortic aneurysm as second cardiovascular indication for pacibekitug, expanding development for inflammation-driven cardiovascular disease -

Pacibekitug: a long-acting anti-IL-6 monoclonal antibody with best-in-class potential

Attributes observed to date

Long-acting with terminal half-life of ~7 weeks1

>90% pathway inhibition after single 10mg dose²

Fully human with ADAs in only 0.5% of patients³

High affinity to IL-6⁴

Existing data from approximately **450 study** participants¹

Potential value to patients

- **Dosing quarterly**⁵ (CV) or **every 8 weeks**⁶ (TED)
- Rapid and robust impact across diseases
- Durable benefit without need to increase dose
- Volume of ≤ 1 ml for SC injection^{5,6}
- Generally **well-tolerated safety profile** observed to date

TOURMALINE | INVESTOR DAY

¹Across six clinical trials in healthy volunteers and RA, SLE, and CD patients. ²Data on file; single intravenous 10mg dose in Ph1 MAD study in RA patients; as measured by C-reactive protein (CRP), a pharmacodynamic marker of IL-6 signaling. ³Generated from Medarex transgenic mouse platform; across approximately 450 subjects dosed with pacibekitug, only 2 subjects generated anti-drug antibodies (ADAs) following treatment. ⁴Data on file: ⁵To be evaluated in CV Phase 2 trial. ⁶To be evaluated in TED Phase 2 trial. Every 8-week dosing was achieved in prior Phase 2 trials. CD: Crohn's Disease. CV: cardiovascular. SC: subcutaneous. RA: rheumatoid arthritis. SLE: systemic lupus erythematosus. TED: thyroid eye disease.

Our expanding clinical development plan for pacibekitug

Disease focus	Indication	Preclinical	Phase 1	Phase 2	Phase 3	Expected key milestones
Cardiovascular inflammation	Atherosclerotic cardiovascular disease (ASCVD)	Phase 3 planning in p		ocess		TRANQUILITY Phase 2 topline data expected in Q2 2025
	Abdominal aortic aneurysm (AAA)	Phase 2 PoC plar	nning in process			Phase 2 PoC trial initiation expected after TRANQUILITY topline data
Autoimmune disease	Thyroid eye disease (TED)					spiriTED Phase 2b topline data expected in H2 2025 Phase 3 initiation dependent upon spiriTED results

Our world-class Cardiovascular Scientific Advisory Board

Deepak L. Bhatt, MD, MPH, MBA SAB Chair Mount Sinai Fuster Heart Hospital

Joshua A. Beckman, MD, MSc University of Texas Southwestern

Marc P. Bonaca, MD, MPH University of Colorado CPC Clinical Research

Robin Choudhury, MA, DM University of Oxford

Dipender Gill, MD, PhD Sequoia Genetics

Douglas L. Mann, MD Washington University School of Medicine

James Min, MD Cleerly, Inc.

Pradeep Natarajan, MD, MMSC Massachusetts General Hospital Harvard Medical School

Michael D. Shapiro, DO, MCR Wake Forest University

Michael Szarek, PhD University of Colorado CPC Clinical Research

Marc P. Bonaca, MD, MPH

Executive Director, CPC Clinical Research Director of Vascular Research Professor, Division of Cardiology William R. Hiatt Endowed Chair in Cardiovascular Research

School of Medicine UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS

Agenda

Carrying pacibekitug momentum into 2025	Sandeep Kulkarni, MD Co-Founder & CEO
Addressing residual inflammatory risk in CV diseases	Marc P. Bonaca, MD, MPH University of Colorado CPC Clinical Research
Pioneering the next frontier in CV with IL-6 inhibition	Emil deGoma, MD SVP, Medical Research
Pacibekitug's practice-changing potential in CV	Gerhard Hagn SVP, Head of Commercial & BD
Confirming pacibekitug's best-in-disease opportunity in TED	Gerhard Hagn SVP, Head of Commercial & BD
Q&A	

An Affiliate of:

Addressing Residual Inflammatory Risk in CV Diseases

Marc P. Bonaca MD MPH Director of Vascular Research William R. Hiatt Endowed Chair in Cardiovascular Research Professor of Medicine University of Colorado School of Medicine

Atherosclerosis is a Systemic Disease

Coronary, Cerebrovascular, Lower Extremity

Atherosclerotic Vascular Diseases

Data Source: WHO; Libby PL. Circulation. 2001;104:365-372.

Plaque

rupture,

thrombosis.

acute

coronary

syndrome

(ACS)

Atherosclerosis is a Systemic Disease

> 500 million worldwide suffer from cardiovascular disease with ~20 million dying in 2021

American Heart Association. Heart Disease and Stroke Statistics – 2021 Update. Song et al. Lancet Glob Health 2019; Lindstrom et al. JACC 2022. Coronado et al. Global Responses to Prevent, Manage, and Control Cardiovascular Diseases. ACS: acute coronary syndrome. CAD: coronary artery disease. PAD: peripheral artery disease. TIA: transient ischemic attack.

Multiple Drivers of Risk

Current Treatment Landscape

DAPT: dual antiplatelet therapy. GL: glycemic load. GLP1a: glucagon-like peptide-1 agonist. PCSK9i: proprotein convertase subtilisin/ kexin type 9 inhibitor. SGLTi: sodium-glucose cotransporter inhibitor

Populations at the Highest Risk

Metastatic Atherosclerosis

Polyvascular Disease in PAD is Associated with Increased MACE Risk

Bonaca Vasc Med 2018. CAD: coronary artery disease. MACE: major adverse cardiovascular event. PAD: peripheral artery disease.

PAD, Polyvascular Disease and Risk of MACE

Bonaca et al. Circulation 2018. adjusted age, sex, race, BMI, diabetes, hypertension, smoking, eGFR, CHF, prior MI, CABG/PCI, and history of stroke or TIA. MACE: major adverse cardiovascular events. PAD: peripheral artery disease.

Populations at the Highest Risk

Peripheral Artery Disease

Increasing Rates of Critical Limb Ischemia and Hospitalizations

Chronic Patients with Prior Revascularization at Higher Risk of ALI

<u>MALE Event Rate ~3% per year in</u> <u>stable with prior revascularization¹</u> <u>Risk of MALE ~4 fold higher after</u> adjustment for other baseline differences

¹Qamar Vasc Med 2019. ²Bonaca et al. Circulation 2016. ³Bonaca et al. JACC 2016. ⁴Jones et al., Circulation 2016. ABI: ankle brachial index. ALI: acute limb ischemia. ARD: absolute risk difference. HR: hazard ratio. MALE: major adverse limb event. NNT: number needed to treat. PAD: peripheral artery disease

Populations at the Highest Risk

Acute Coronary Syndrome & Diabetes

PAD and **Diabetes** in **ACS** – A Malignant Combination

Bonaca et al. Lancet Diabetes & Endocrinology 2018. ACS: acute coronary syndrome. CV: cardiovascular. HR: hazard ratio. MI: myocardial infarction. PAD: peripheral artery disease. PV: polyvascular

Summary

- Patients with ASCVD are at high risk for severe events including heart attack, stroke, and limb outcomes; some are at very high risk
 - Polyvascular Disease
 - PAD particularly after revascularization
 - CAD with high-risk features (e.g. T2DM, recent ACS)
- Despite novel therapies to address diabetes risk, thrombotic risk, and lipid risk, significant residual risk remains – particularly in the highest risk patients
- Inflammation remains the core risk driver without a proven therapy
 - Target
 - Toxicity
 - Matching treatment to the population

Inflammation – An Independent Risk Factor

Inflammation – An Additive Risk Factor

Inflammatory Pathways

IL-6R variant (UCRP 9%) associated with a significantly lower risk of ASCVD in multiple human studies

Sarwar et al., Lancet (2012). Swerdlow et al., Lancet (2012). Figures Adapted from Ridker et al., Circ Res (2021) and Cai et al., JAMA Cardiol (2018). ASCVD: atherosclerotic cardiovascular disease, CHD: coronary heart disease, CRP: C-reactive protein, IL: interleukin. Tourmaline Investor Dav

Rationale for IL-6 inhibition in PAD: Human Genetic Data

IL6R variant mimicking low-dose anti-IL-6R mAb associated with decreased risk of PAD

Exposure	Outcome	Study	Cases	Controls					OR	95% CI	Р
IL6R Asp358Ala	PAD	MVP	35042	247115		-	•		0.96	[0.94, 0.97]	9 × 10 ⁻⁷
IL6R Asp358Ala	PAD	MVP/BBJ/FNG	45733	662516		-	-		0.95	[0.94, 0.97]	5×10^{-10}
IL6R Asp358Ala	CAD	MVP	77241	139284		-	•		0.96	[0.94, 0.97]	1 × 10 ⁻⁸
					0.8 Odds Ratio	0.9 (95% Confid	1.0 ence Interva	1.1			

Exposure	Outcome	Cases	Controls		OR	95% CI	Р
IL6R Asp358Ala	Non-specific	21059	247115	_ _	0.97	[0.95, 0.99]	0.003
IL6R Asp358Ala	Claudication	8646	247115		0.94	[0.91, 0.97]	2×10^{-4}
IL6R Asp358Ala	CLTI	4185	247115	_	0.95	[0.91, 1]	0.03
IL6R Asp358Ala	Amputation	786	247115	-	0.86	[0.77, 0.96]	0.009
				0.8 0.9 1.0 1.1 Odds Ratio (95% Confidence Interval)			

Levin et al., Circ Res (2021). CAD: coronary artery disease. CLTI: chronic limb threatening ischemia. CI: confidence interval, IL: interleukin, mAb: monoclonal antibody, PAD: peripheral artery disease, OR: odds ratio.

Epidemiological studies of IL-6 and ASCVD

IL-6 levels and incident CHD risk (29 prospective studies)¹

IL-6 levels and MACE in CKD²

¹Ridker & Rane, Circ Res (2021) adapted from Kaptoge et al., Eur Heart J (2014). ²Batra et al, JAMA Cardiol (2021). ASCVD: atherosclerotic cardiovascular disease, CHD: coronary heart disease, Cl: confidence interval, CKD: chronic kidney disease, eGFR: estimated glomerular filtration rate, IL: interleukin, MACE: major adverse cardiovascular event, MI: myocardial infarction, RR: relative risk.

CRP an Independent Predictor of Acute Limb Ischemia

<u>PAD</u> C-Statistic 0.82 ■ Placebo ■ Vorapaxar

Variable Points 14% 13.1% Claudication 2 **Prior Peripheral** 12% 2 years Revascularization ABI <= 0.5 1 9.5% 10% **History of Heart Failure** 1 at 3 Weight < 80 kg 1 8% 6.9% Rate CRP >= 3 1 5.7% 5.4% ASA monotherapy 6% 1 MALE 3.6% 3.3% 4% 2.0% 1.2% 2% 0.1% 0.1% 0.1% 0.7% 0.1% 0.1% 0.0% 0% 2 5 6 7 n 1 2 Δ **Risk Score**

Bonaca et al. AHA 2018. CRP: C-reactive protein. MALE: major adverse limb events. PAD: peripheral artery disease.

CANTOS: Dose-Dependent Effects on Inflammatory Biomarkers and Lipids (48 Months)

Ridker PM, Everett BM et al. N Engl J Med. 2017;377:1119-31. hs-CRP: high sensitivity C-reactive protein. LDLC: low-density lipoprotein cholesterol. TG: triglycertides. SC: subcutaneous

CANTOS: Primary Cardiovascular Endpoints

Ridker PM, Everett BM et al. N Engl J Med. 2017;377:1119-31. MACE: major adverse cardiovascular events. hs-CRP: high sensitivity C-reactive protein. LDLC: low density lipoprotein cholesterol. SC: subcutaneous.

CANTOS: Lower risk of CV mortality in subgroups achieving low on-treatment hs-CRP, low IL-6

CV mortality benefit in hs-CRP <2 mg/L¹

	Placebo (n=3182)	Canakinumab, hsCRP ≥2 mg/L at 3 months (n=2868)	Canakinumab, hsCRP <2 mg/L at 3 months (n=3484)	p _{trend} across categories
Myocardial infarction, s	troke, or death from a	any cause		
Incidence rate (n)	5.39 (614)	5.38 (553)	3.96 (508)	
HR ^{adj} (95% CI)	1 (ref)	0.93 (0.83–1.05)	0·73 (0·65–0·82)	
p value	Ref	0.25	<0.0001	<0.0001
Cardiovascular death				
Incidence rate (n)	1.74 (211)	1.83 (198)	1.22 (164)	
HR ^{adj} (95% CI)	1 (ref)	0·99 (0·82–1·21)	0.69 (0.56–0.85)	
p value	Ref	0.95	0.0004	0.0004

CV mortality benefit in IL-6 < median²

Treatment group, on-treatment IL-6 threshold	N	Incidence rate (n) ^a	HR (95% CI)	P-value	HR ^{adjusted} (95% CI) ^b	P-value
MACE						
Placebo	1597	4.91 (282)	1 (ref)		1 (ref)	
Canakinumab, IL-6 ≥ median value (1.65 mg/L)	1619	5.15 (291)	1.06 (0.90-1.25)	0.49	0.90 (0.76-1.07)	0.25
Canakinumab, IL-6 < median value (1.65 mg/L)	1617	3.21 (199)	0.64 (0.54–0.77)	< 0.0001	0.68 (0.56-0.82)	< 0.0001
P-value for trend across categories				< 0.0001		< 0.0001
MACE+						
Placebo	1597	5.49 (311)	1 (ref)		1 (ref)	
Canakinumab, IL-6 ≥ median value (1.65 mg/L)	1619	5.44 (305)	1.00 (0.85-1.17)	0.97	0.87 (0.74-1.02)	0.093
Canakinumab, IL-6 < median value (1.65 mg/L)	1617	3.72 (228)	0.67 (0.57-0.80)	< 0.0001	0.70 (0.59-0.84)	< 0.0001
P-value for trend across categories				< 0.0001		< 0.0001
Cardiovascular mortality						
Placebo	1597	1.66 (103)	1 (ref)		1 (ref)	
Canakinumab, IL-6 ≥ median value (1.65 mg/L)	1619	2.26 (136)	1.38 (1.07–1.79)	0.0134	1.15 (0.88–1.51)	0.30
Canakinumab, IL-6 < median value (1.65 mg/L)	1617	0.72 (47)	0.43 (0.30-0.60)	< 0.0001	0.48 (0.34-0.68)	< 0.0001
P-value for trend across categories				< 0.0001		0.0002

Current State

- Colchicine^{1,2}
 - Largest trial showed no benefit
 - Poorly tolerated
 - Unclear benefit/risk for mortality
 - Unclear mechanism
- Canakinumab
 - Not available
- IL-6³
 - Specific
 - Strong pre-clinical, genetic, observational data
 - Programs focused on ASCVD in CKD, HFpEF, acute MI ongoing
Summary

- ASCVD is the number 1 killer in the context of an aging population with more cardiometabolic disease
- Patients with polyvascular disease (metastatic atherosclerosis), high risk PAD, and high risk CAD are at very high risk of MACE + MALE with event rates approaching 7-10% per year¹⁻⁴
- Therapies targeting lipids, thrombosis, and diabetes are effective but significant residual risk remains¹⁻⁴
- Inflammation is an unaddressed risk factor with IL-6 as a specific target supported by extensive genetic and observational data
- Novel therapies targeting IL-6 hold great promise to reduce global vascular risk in patients with high risk ASCVD

Abdominal Aortic Aneurysm

A morbid "ticking time bomb" with no available medical therapies to prevent the progression of disease

Abdominal Aortic Aneurysm

- Affects ~ 2 million in the US
- Defined as an abdominal aortic diameter > 3 cm
- An inflammatory disease acquired in the context of age, smoking, hypertension, hypercholesterolemia
- A silent killer that grows asymptomatically until rupture, unless detected by screening
- Current medical therapy is based on risk factors (e.g. smoking cessation, blood pressure lowering) but does not directly address the pathobiology of disease or halt progression
- Patients inevitably progress to requiring repair or rupture

Abdominal Aortic Aneurysm

AAA prevalence estimates likely underestimate unmet need due to suboptimal adherence to screening guidelines

2022 AHA/ACC Guidelines ¹	2019 SVS Guidelines ²	2019 USPSTF Guidelines ³
 Recommend screening for AAA in: Men/women ≥65y with a history of smoking or a family history of AAA Men/women <65y with multiple risk factors for AAA 	 Recommend screening for AAA in: Men/women 65-75y with a history of tobacco use. Men/women 65-75y with a first-degree relative with AAA. Men/women >75y with a history of tobacco use who are in otherwise good health. 	 Recommend screening for AAA in: Men 65-75y who have ever smoked Men 65-75y who never smoked but have other risk factors, such as family history

- Cochrane meta-analysis showed that AAA screening was associated with a 40% reduction in mortality⁴
- Recent analysis of a US claims database of 250 million patients reported a 39% adherence rate with AAA screening guidelines⁵
- In a US study of 65,000 patients admitted for ruptured AAA, 24% of patients with ruptured AAA were <65 years, suggesting that expansion of screening criteria are warranted⁶

¹Isselbacher et al., Circulation (2022). ²Chaikof et al., J Vasc Surg 2018. ³USPSTF, JAMA (2019). ⁴Cosford et al., Cochrane (2007). ⁵Ho et al., J Vasc Surg (2023). ⁶Dansey et al., J Vasc Surg (2021). AAA: abdominal aortic aneurysm.

Inflammation is considered critical to the pathogenesis of AAA

Chronic aortic inflammation

- Neutrophils, macrophages, T and B lymphocytes, enter aortic wall
- Cytokines potentiate inflammation
- Inflammatory response increases vasculotoxic factors, eg, proteases, oxygen-derived free radicals

Aortic wall destruction

- Breakdown of extracellular matrix
- Vascular smooth muscle death

Human genetic studies of IL-6 and abdominal aortic aneurysm

Genetic variant of downregulated IL-6 signaling associated with significant reduction in risk of AAA

Cai et al., JAMA Cardiol (2018). Georgakis et al., Circ Genom Precis Med (2020). Harrison et al., Eur Heart J (2013). AAA: abdominal aortic aneurysm.

Epidemiological studies of hs-CRP and abdominal aortic aneurysm

De Haro et al., J Vasc Surg (2012). AAA: abdominal aortic aneurysm. hs-CRP: high sensitivity C-reactive protein.

Potential for Broad Vascular Benefits & AAA Disease Modification Before and After Repair

Schanzer et al. NEJM 2021. Schermerhorn et al., NEJM 2008. Schermerhorn et al., NEJM 2015. Golledge et al., J Vasc Surg 2023. AAA: abdominal aortic aneurysm

Agenda

Carrying pacibekitug momentum into 2025	Sandeep Kulkarni, MD Co-Founder & CEO
Addressing residual inflammatory risk in CV diseases	Marc P. Bonaca, MD, MPH University of Colorado CPC Clinical Research
Pioneering the next frontier in CV with IL-6 inhibition	Emil deGoma, MD SVP, Medical Research
Pacibekitug's practice-changing potential in CV	Gerhard Hagn SVP, Head of Commercial & BD
Pacibekitug's practice-changing potential in CV Confirming pacibekitug's best-in-disease opportunity in TED	Gerhard Hagn SVP, Head of Commercial & BD Gerhard Hagn SVP, Head of Commercial & BD

Our vision is to lower CV-related morbidity and mortality in patients with high inflammatory risk through IL-6 inhibition...

To achieve this vision, we plan to...

Bring pacibekitug to high-risk ASCVD patients as a targeted anti-inflammatory therapy

Expand pacibekitug use beyond patient populations currently studied in clinical trials

Support increased **testing of hs-CRP** by leveraging activities of others in a **targeted manner**

Improve adherence and real-world effectiveness through quarterly administration of pacibekitug

> Innovate CV trial designs and ultimately patient care by engaging with our CV SAB and other experts

...so that millions of CV patients live healthier and longer lives

Reducing inflammation: the next frontier for cardiovascular disease

Atherothrombotic Pathways	Thrombosis	Hypertension	Atherogenic lipoproteins	Diabetes, Insulin resistance, Obesity	Inflammation
Biomarkers	None readily available	Blood pressure	ApoB, Non-HDL-C, LDL-C, Triglycerides, Lipoprotein(a)	HbA1c, Fasting glucose, Weight	C-reactive protein
Approved Therapies	Aspirin P2Y12R inhibitors Factor Xa inhibitors PAR-1 antagonists	ACEI/ARB Calcium channel blockers Thiazide diuretics Renin inhibitors Beta-blockers Mineralocorticoid antagonists	Statins PCSK9 inhibitors Icosapent ethyl NPC1L1 inhibitors ACL inhibitors Bile acid sequestrants MTP inhibitors ANGPTL3 inhibitors Apheresis	SGLT2 inhibitors GLP-1 agonists GIP/GLP-1 agonists	Colchicine
Therapies in Late-Stage Development	Factor XI inhibitors Factor XIa inhibitors	Angiotensinogen inhibitors Aldosterone synthase inhibitors Endothelin antagonists Renal denervation Baroreceptor activation	CETP inhibitors Lipoprotein(a) inhibitors ApoC3 inhibitors Fibrates CRISPR PCSK9 base editing	GIP/GLP-1/glucagon agonists Amylin agonists GIP-1/amylin agonists	IL-6 inhibitors NLRP3 inhibitors

TOURMALINE | INVESTOR DAY

List of therapies not exhaustive. ACEI: angiotensin-converting enzyme inhibitor. ACL: adenosine triphosphate-citrate lyase. ANGPTL3: angiopoietin-like protein 3. ApoB: apolipoprotein B. ApoC3: apolipoprotein C3. ARB: angiotensin receptor blocker. CETP: Cholesteryl ester transfer protein. CRISPR: clustered regularly interspaced short palindromic repeats. GIP: gastric inhibitory polypeptide. GLP-1: glucagon-like peptide-1. IL-6: Interleukin-6. MTP: microsomal triglyceride transfer protein. NLRP3: nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3. NPC1L1: Niemann-Pick C1-Like 1. PAR: protease-activated receptors. PCSK9: proprotein convertase subtilisin/ kexin type 9. P2Y12R: purinergic 2Y type 12 receptor. SGLT2: sodium-glucose cotransporter 2.

After decades of accumulating evidence, we are now approaching a potential paradigm shift in cardiovascular inflammation

YEARS

TOURMALINE | INVESTOR DAY

¹Berk et al., Am J Cardiol (1990). ²Liuzzo et al., N Engl J Med (1994). ³Ridker et al., N Engl J Med (1997). ⁴Ridker et al., N Engl J Med (2008). ⁵Swerdlow et al., Lancet (2012). ⁶Kaptoge et al., Eur Heart J (2014). ⁷Ridker et al., N Engl J Med (2017). ⁸Tardif et al., N Engl J Med (2019). ¹⁰Nidorf et al., N Engl J Med (2020). ¹⁰Georgakis et al., Circ Genom Precis Med (2020). ¹¹Levin et al., Circ (2021). ¹²Zhao and Gill, Clin Ther (2024). ¹³Papadopoulos et al., Neurology (2022). ¹⁴Ridker et al., Circ (2023). ¹⁵Ridker et al., Lancet (2023). ¹⁶Kosiborod et al., N Engl J Med (2024). ¹³Packet et al., N Engl J Med (2024). CAD: coronary artery disease. hs-CRP: high sensitivity C-reactive protein. IS: ischemic stroke. LDL-C: low-density lipoprotein cholesterol. Lp(a): Lipoprotein(a). MR: mendelian randomization

Mechanism matters: compelling human evidence for IL-6 inhibition in CV diseases

TOURMALINE | INVESTOR DAY

¹Swerdlow et al., Lancet (2012). ²Sarwar et al., Lancet (2012). ³Levin et al., Circ Res (2021). ⁴Georgakis et al., Circ Genom Precis Med (2020). ⁵Zhao and Gill, Clin Ther (2024). ⁶Ridker et al., N Engl J Med (2024). ⁷Ridker et al., Lancet (2023). ⁸Kaptoge et al., Eur Heart J (2014). ⁹Mehta et al., Curr Athero Rep (2024). ¹⁰Ridker et al., N Eng J Med (2017). ¹¹Ridker et al., Lancet (2018). ¹²Ridker et al., Eur Heart J (2018). ¹³Ridker et al., J Am Coll Cardiol (2018). CV: Cardiovascular. MACE: major adverse cardiovascular events. RRR: relative risk reduction.

IL-6 inhibition has produced rapid and robust hs-CRP reductions in patients with established or at high-risk of CVD

% of patients with hs-CRP <2 mg/L

TOURMALINE | INVESTOR DAY

¹RESCUE: Ridker et al., Lancet (2021). Ziltivekimab 15mg q4w arm. ²Chertow et al., Nat Med (2024). Clazakizumab 5mg q4w arm. ³CANTOS: Ridker et al., N Eng J Med (2017). 150mg q3m arm. ⁴Fiolet et al., PLOS ONE (2020). Colchicine 0.5mg QD. ⁵SELECT: Plutzky et al., EAS Congress (2024). Semaglutide 2.4mg QW maintenance. ⁶Borlaug et al., Nat Med (2024). Tirzepatide up to 15mg QW. ⁷Ridker et. al., Lancet (2017). Time course values obtained by webplotdigitizer. Values are not placebo adjusted. CVD: cardiovascular disease. GIP: gastric inhibitory polypeptide. GLP-1: glucagon-like peptide-1. hs-CRP: high sensitivity C-reactive protein. Certain data in this presentation are based on a cross-trial comparison and are not based on head-to-head clinical trials. Cross trial comparisons are inherently limited and may suggest misleading similarities or differences in outcomes. Results of head-to-head comparisons may differ significantly from those set forth herein.

Pacibekitug achieved rapid and robust suppression of hs-CRP in patients with high-grade inflammatory autoimmune disorders

TOURMALINE | INVESTOR DAY

CD: Crohn's disease. hs-CRP: high sensitivity C-reactive protein. OLE: open-label extension, RA: rheumatoid arthritis, SLE: systemic lupus erythematosus. Rheumatoid arthritis: B0151002 study report. Table 14.4.7.1.1. Median baseline CRP 9.0 mg/L. Key eligibility: active disease, background methotrexate. Crohn's disease: B0151003 study report. Table 14.2.4.1.3. Median baseline hs-CRP 21.1 mg/L. Key eligibility: active disease, failed/intolerant to anti-TNFα. CD OLE B0151005 study report. Table 14.2.4.1. Median prebaseline hs-CRP 16.4 mg/L, baseline hs-CRP 4.0 mg/L. Systemic lupus erythematosus: B0151006 study report. Table 14.3.4.1.5. Median baseline hs-CRP 2.2 mg/L.

Safety profile of IL-6 inhibition is well understood

TOURMALINE

INVESTOR DAY ¹Choy et al., Nat Rev Rheumatol (2020). ²Ridker et al., Lancet (2021). ³NCT05021835, NCT06118281, NCT05636176, NCT05485961. ⁴Ridker et al., Lancet (2024). ⁵Across six clinical trials in healthy volunteers and RA, SLE, and CD patients. AE: adverse events. CV: cardiovascular

ASCVD: Our lead CV indication with potentially practice-changing impact

Cerebrovascular disease

Coronary artery disease

Peripheral artery disease

- ACSVD continues to be the leading cause of death globally¹
- With **significant**, **persistent unmet need** for targeted anti-inflammatory therapy²

TRANQUILITY Phase 2 trial supporting development in ASCVD

Double-blinded, placebo-controlled Phase 2 trial (NCT06362759) | Status: over-enrollment completed

Study population:

- CKD stage 3-4 (eGFR 15-59 ml/min/1.73m²) or UPCR>200 mg/g
- hs-CRP ≥2 mg/L and <15 mg/L
- Exclude patients at higher risk for safety complications (e.g., immunocompromised patients)

Primary pharmacodynamic endpoint:

• Change from baseline in hs-CRP through Day 90

Additional endpoints:

- Percent of participants who achieve hs-CRP <2 mg/L
- Other pharmacodynamic markers, including lipoprotein (a)
- · Safety and tolerability

TOURMALINE | INVESTOR DAY

ASCVD: atherosclerotic cardiovascular disease. CKD: chronic kidney disease. eGFR: estimated glomerular filtration rate. hs-CRP: high-sensitivity C-reactive protein. UPCR: urine protein-creatinine ratio.

A high-mortality, first-in-disease opportunity for pacibekitug

AAA:

- High-risk vascular disease with significant unmet need in approximately 2M people in US¹
- Strong strategic fit with ASCVD due to overlapping prescribers
- Progressive disease with increasing risk of rupture, usually a fatal event²
- In less than 5 years, majority of medium-sized AAA grow to threshold for surgical repair^{3,4}
- Surgical repair, recommended for large AAA to prevent rupture, is associated with complications⁵⁻⁹

No FDA approved treatment

TOURMALINE | INVESTOR DAY

¹Stuntz, Cardiology (2016). ²Golledge et al., Eur Heart J (2023). ³UKSAT, NEJM (2002). ⁴Lederle et al., NEJM (2002). ⁵Chaikof et al., J Vasc Surg (2018). ⁶Isselbacher et al., Circulation (2022). ⁷Schermerhorn et al., NEJM (2008). ⁸Yei et al., JAMA Netw Open (2022). ⁹Gilmore et al., Circ Cardiovasc Qual Outcomes (2024). Figure from https://medlineplus.gov/ency/article/000162.htm. AAA: abdominal aortic aneurysm. ASCVD: atherosclerotic cardiovascular disease. HCP: healthcare professional.

Compelling evidence supports IL-6 inhibition to slow AAA growth

Human genetic evidence

۲

TOURMALINE

Genetic variant associated with reduction in risk of AAA¹

Abdominal aortic aneurysm outcomes		N _{cases}	OR (95% CI)	pval
Any AAA (AAAgen)	H	39,221	0.91 (0.90-0.93)	4x10 ⁻³⁰
Any AAA _(UKB)	⊢ ●	1,963	0.90 (0.84-0.96)	0.001
Any AAA (FinnGen)	⊢ ●–1	3,869	0.86 (0.82-0.91)	7x10 ⁻⁹
Fatal AAA	• · · · ·	- 1 131	0.89 (0.69-1.14)	0.340
Related cardiovascular outcomes				
Thoracic aortic aneurysm	⊢	1,351	1.00 (0.92-1.09)	0.950
Intracranial aneurysm	He I	10,754	0.99 (0.96-1.03)	0.667
Coronary artery disease		210,842	0.96 (0.95-0.97)	4x10 ⁻¹⁸
Positive control outcomes				
Rheumatoid arthritis (consortium)	Hei	35,871	0.94 (0.92-0.96)	2x10 ⁻⁹
Rheumatoid arthritis _(FinnGen)	He I	15,223	0.95 (0.93-0.98)	9x10 ⁻⁴
Polymyalgia rheumatica	⊢ ●	2,460	0.93 (0.88-0.98)	0.01
Severe COVID-19	н е ң	18,152	0.98 (0.95-1.00)	0.02
-	0.7 0.8 0.9 1.0 1.	1		
	Odds ratio per rs2228145 C all	ele		

(D) IL-6 studies - Tissue sample

	Expe	eriment	al	(Control			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Treska 2002	527.9	468.9	32	28.3	13.9	14	19.5%	1.25 [0.57, 1.93]	
Shteinberg 2000	0.6	0.4	82	0.01	0.006	73	21.7%	2.02 [1.63, 2.41]	
Cheuk 2007	90.3	31.7	20	28.1	5.9	4	14.4%	2.03 [0.79, 3.28]	
Davis 2001	5.5	2.1	8	1.75	0.4	8	13.5%	2.35 [0.99, 3.70]	
Middleton 2007	0.15	0.05	10	0.01	0.01	9	11.8%	3.61 [2.04, 5.19]	
Reily 1999	14,239	4,159	13	1,861	334	16	13.1%	4.32 [2.92, 5.72]	
Szekanecz 1994	1,008	197	-7	190	14	4	6.0%	4.64 [1.93, 7.36]	· · · · ·
Total (95% CI)			172			128	100.0%	2.56 [1.79, 3.33]	•
Heterogeneity: Tau ² =	0.68; Ch	1ª = 22.8	6, df =	6 (P=0	(8000.0	1ª = 74	%	1	. t 1 1
Test for overall effect	Z= 6.49	(P < 0.0	0001)					6	Favours [experimental] Favours [cont

INVESTOR DAY ¹Burgess et al., ATVB 2024. ²Thanigaimani et al., Biomedicine (2022). ³Kokje et al., Atherosclerosis (2016). Results at day 14. ⁴Nishihara et al., PLoS One (2017). Results at day 21. AAA: abdominal aortic aneurysm.

Higher IL-6

levels associated with AAA²

Phase 2 PoC study expected to use imaging to evaluate the ability of pacibekitug to inhibit AAA growth

- Serial imaging is the foundation of clinical care¹
- Phase 2 PoC expected to use multimodality imaging to efficiently characterize pacibekitug

Next steps:

- TRANQUILITY topline data in Q2 2025
- Alignment with FDA on Phase 2 PoC design
- Details to be shared prior to study start

Agenda

Carrying pacibekitug momentum into 2025	Sandeep Kulkarni, MD Co-Founder & CEO
Addressing residual inflammatory risk in CV diseases	Marc P. Bonaca, MD, MPH University of Colorado CPC Clinical Research
Pioneering the next frontier in CV with IL-6 inhibition	Emil deGoma, MD SVP, Medical Research
Pacibekitug's practice-changing potential in CV	Gerhard Hagn SVP, Head of Commercial & BD
Confirming pacibekitug's best-in-disease opportunity in TED	Gerhard Hagn SVP, Head of Commercial & BD
Q&A	

Unlike other cardiovascular / metabolic MOAs, there is scarcity value in the IL-6 class

TOURMALINE | INVESTOR DAY

, Source: Citeline. CV: cardiovascular. GLP: glucagon-like peptide. MOAs: mechanisms of action. NLRP3: nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3.

Potentially over 20M CV patients with residual inflammatory risk in the US

been verified by any independent source.

sensitivity C-reactive protein. MI: myocardial infarction. TAM: Total addressable market. Figure sizes are directional and not to scale. Figures are estimates rounded to the nearest million based on internal market research and have not

61 dependent end stage renal disease. HF: heart failure. HFmrEF: heart failure with mildly reduced ejection fraction. HFpEF: heart failure with preserved ejection fraction. HFrEF: heart failure with reduced ejection fraction.

Our approach to differentiation within IL-6 class is three-pronged

Less frequent dosing drives greater adherence in CVD which profoundly improves patient outcomes

Weekly vs.
daily SCPatients on weekly Ozempic were 30%
more adherent than on daily Victoza5

2 / year SC vs. Patients on 2 / year Prolia were 29% more adherent than on weekly orals at year 2⁶

TOURMALINE INVESTOR DAY ¹Baroletti and Dell'Orfano. Circ (2010). ²Chen et al., Clin Cardiol (2022). ³Sokol et al., Med Care (2005). ⁴Piña et al. Prog Cardiovasc Dis (2021). ⁵Uzoigwe et al, Diabetes Ther (2021). ⁶Freemantle et al, Osteoporos Int (2011). CV: cardiovascular. CVD: cardiovascular disease. SC: subcutaneous.

We strategically assess first-in-class and first-in-disease patient populations for clinical development

TOURMALINE

Strategic selection criteria:

- 1. Compelling genetic, epidemiological, and clinical evidence
- 2. High and persistent risk of CV-related morbidity and mortality
- 3. Overlapping prescriber bases with validated motivation to treat with IL-6

INVESTOR DAY ¹Gu et al., Am J Prev Cardiol (2022). ²Nanna et al., Circulation (2022). Figure sizes are not necessarily to scale. AAA: abdominal aortic aneurysm. ASCVD: atherosclerotic cardiovascular disease. CKD: chronic kidney disease. CV: cardiovascular.

Successful cardiometabolic brands have gained advantage over first-to-market class competitors

Differentiation Strategy	Analog Market	Brands = In-class follower	Relative Performance US Peak Year Sales ¹	Summary
	GLP-1	Victoza liragutide injection 12mg/18mg	~\$3B	In the context of a broader blockbuster arms-race, Eli Lilly successfully promoted Trulicity's weekly dosing advantage over daily Victoza to
Dosing	Type 2 diabetes	dulagilutide once-weekly injection	~\$6B	overtake Novo Nordisk's first-gen GLP-1 (despite limited clinical differentiation) ahead of semaglutide launch
(X A X X X X X X	SGLT2	farxiga (dapagliflozin)	~\$1.5B	Boehringer Ingelheim / Eli Lilly moved aggressively and strategically to unlock remaining white space in increasingly crowded Type 2
Strategy	Type 2 diabetes	Jardiance (empagliflozin) tablets	~\$5B	<i>diabetes market</i> , securing their supremacy in the high-opportunity new cardiologist channel with first-in-class CV outcomes
	Factor Xa	Vivaroxaban tablets & oral suspension	~\$2.5B	After Xarelto missed superiority vs. warfarin in their pivotal, BMS / Pfizer delayed their own launch to increase sample size and achieve
Fast Learner	Anticoagulation	Cliquis。 (apixaban) tablets 25%。	~\$8.5B	<i>superiority</i> , which they were able to promote in US alongside other clinical advantages to later dominate the market

TRANQUILITY topline results, if positive, are expected to unleash multiple attractive paths for pacibekitug in CV inflammation

TOURMALINE

Agenda

Carrying pacibekitug momentum into 2025	Sandeep Kulkarni, MD Co-Founder & CEO
Addressing residual inflammatory risk in CV diseases	Marc P. Bonaca, MD, MPH University of Colorado CPC Clinical Research
Pioneering the next frontier in CV with IL-6 inhibition	Emil deGoma, MD SVP, Medical Research
Pacibekitug's practice-changing potential in CV	Gerhard Hagn SVP, Head of Commercial & BD
Confirming pacibekitug's best-in-disease opportunity in TED	Gerhard Hagn SVP, Head of Commercial & BD
Q&A	

<u>TED</u>: An independent shot on goal for pacibekitug with its own blockbuster potential

Autoimmune disease with heterogenous symptoms and inflammation at the core

Focus in 2024 has been on spiriTED trial execution

Market research and KOL interactions reinforce our conviction in pacibekitug

We expect to report spiriTED topline data in H2 2025

Recent conferences confirmed significant unmet need in TED...

Building Tourmaline presence and trial awareness

Merican Society of Ophthalmic No Plastic and Reconstructive Surgery

Core take-aways from discussions with TED-treaters

- 1. Tepezza's **lack of durable response** is an increasing concern
- 2. Managing **AE profile remains a challenge** including hearing loss, menstrual/reproductive issues, hyperglycemia, and muscle spasms
- 3. Endos are starting to get more involved, yet Tepezza's **complexity represents major barrier**
- 4. HCPs have less enthusiasm for other IGF-1R therapies, voicing the **need for new MOAs**

...consistent with our TED market research in the US

3 most commonly-stated unmet needs

1. Lack of durability:

"Main unmet need is the uncertainty on durability of effect" – Endocrinologist¹

2. Management of AE profile

"Endocrinology handles the hyperglycemia. I would probably have ENT, not just audiology, involved for hearing AEs" – Oculoplastic Surgeon²

3. Complexity

TOURMALINE

"Tepezza is cumbersome to administer... filling out forms, finding infusion centers, fighting with insurance firms is labor intensive for the office" – Oculoplastic Surgeon³

Only ~50% of TED patients present with proptosis⁴

Over 50 publications support the therapeutic potential of IL-6 pathway inhibition in TED

Study	s		Key Endpoints			Study Details			Key Endpoints				
				Proptosis	CAS	%					Proptosis	CAS	%
		Study	Ν	response	response	autoantibody			Study	N	response	response	autoantibody
First author	Year	type	treated	rate	rate	reduction	First author	Year	type	treated	rate	rate	reduction
Pérez-Moreiras	2021	Retro	54	78	89	75	Copperman	2019	CS	2	2 100	C	NR
Sánchez-Bilbao	2020	Obs	48	NR	NR	NR	Соу	2019	CS	2	2 NR	50	NR
Atienza-Mateo	2018	Retro	29	NR	NR	NR	Sierra Osorio	2020	CS	2	2 100	100	NR
Lee	2024	Prosp	19	11	47	56	Park	2021	CS	2	2 100	100	NR
Pérez-Moreiras	2014	Prosp	18	72	100	76	Abeillon-du Payrat	2022	CS	2	2 100	50	NR
Pérez-Moreiras	2018	RCT	15	93	60	NS	Butnaru	2013	CR	1	NR	100	NR
de la Fuente Bursón	2020	Retro	15	NR	NR	NR	Gómez Rodríguez	2014	CR	1	NR	100	NR
Pereira	2023	Retro	14	NR	NR	NR	Bielefeld	2017	CR	1	CI	NR	NR
Habroosh	2024	Prosp	13	100	31	68	Canas	2018	CR	1	100	NR	NR
Boutzios	2023	Obs	12	NR	NR	84	Pascual-Camps	2018	CR	1	NR	NR	NR
Pampín-Sánchez	2022	Retro	11	75	73	NR	Garreta Fontelles	2019	CR	1	NR	NR	93
Moi	2022	Retro	10	CI	80	75	Mehmet	2020	CR	1	0	NR	NR
Cortez	2022	Prosp	10	10	100	81	Kaplan	2020	CR	1	NR	C	85
Silkiss	2020	CS	9	CI	56	74	Cayon-Blanco	2020	CR	1	NR	100	NR
Smith	2021	Retro	9	78	100	54	Tran	2020	CS	1	NR	NR	NR
Bielefeld	2019	Obs	8	NR	NR	NR	Ruiz	2021	CR	1	NR	NR	NR
Ceballos-Marcias Jose	2020	CS	8	NR	75	41	Albrashdi	2022	CR	1	100	NR	NR
Bennedjai	2020	Retro	7	NR	NR	73	Cezara	2022	CR	1	NR	C	NR
Moás	2022	Obs	7	NR	NR	92	Mohamed	2022	CS	1	0	C	NR
Toro-Tobon	2023	Retro	6	50	NR	NR	Moleiro	2022	CR	1	100	NR	86
de Pablo Gomez	2018	CS	5	NR	60	NR	Almazrouei	2023	CR	1	NR	NR	NR
Navarrete	2022	Retro	5	NR	NR	NR	Cuculescu	2023	CR	1	CI	C	NR
Ribi	2017	CS	3	33	67	NR	Nirmalan	2023	CS	1	NR	NR	NR
Maldiney	2020	CS	3	67	NR	NR	Pramono	2023	CR	1	NR	NR	NR
Stevens	2022	Retro	3	100	67	NR	Rymuza	2024	CR	1	100	C	8
Russell	2017	CS	2	NR	0	NR							
Sy	2017	CS	2	CI	50	69		Weigl	nted Mea	in	68%	72%	71%
							Smith 201	17 (tepr	o Phase :	2)	71%	69%	N/A
							Douglas 202	20 (tepr	o Phase	3)	83%	59%	N/A

TOURMALINE

INVESTOR DAY

We believe many of these reports may underestimate the true efficacy of IL-6 inhibition

- 350+ mostly steroidrefractory patients
- Late IL-6 inhibition (>9 months post symptom onset) when disease may have exited active phase
- Exposure to IL-6 inhibition may have been suboptimal (<6 months)
- Market research suggests many HCPs already routinely use IL-6 inhibitors in their practice

Proptosis response rate is generally defined in the data outlined here as a ≥2 mm proptosis improvement in the worse eye at baseline without any worsening in the other eye. CAS (Clinical Activity Score) response rate is generally defined in the data outlined here as a CAS of 0 or 1. Studies referenced in this table represent investigator-led studies and were not designed with the intent of generating evidence for an approval of tocilizumab or sarilumab in TED. The majority of these studies were not designed with power to detect statistical significance. Retro: retrospective. Obs: observational. Prosp: prospective. RCT: randomized controlled trial. CS: case series. CR: case report. NR: not reported. NS: not significant. CI: clear improvement. HCP: health care professional. Tepro: teprotumumab. TED: thyroid eye disease. Publications available upon request.

Pacibekitug's target product profile is expected to be welldifferentiated in TED...

Target product profile in TED*

	Study population MOA		Moderate-to-severe active TED patients	
			IL-6 inhibition	Targeting inflammation which is at core of disease
Efficacy		Primary endpoint	• Proptosis	• Unlistic impact on many Only impacting symptoms
	ficacy	Secondary endpoints	 Diplopia, clinical activity score (CAS), inflammation, and lid retraction 	
	Eff	Additional measures	 Lower rate of relapse and retreatment Rapid time to response Lower rate of surgical intervention 	Emphasis on response durability
	Safety	Warnings & precautions	No anticipated risk of permanent hearing loss or warnings beyond typical IL-6 safety considerations	Well-tolerated without the risk of hearing loss
	ac	Dosing & dministration	 Every 8-week, low volume subcutaneous injection through pre-filled syringe Finite dosing 	Least frequent and most patient-friendly SC dosing

TOURMALINE | INVESTOR DAY

*This target product profile outlines the desired characteristics of pacibekitug in TED. It will be informed by clinical data from Phase 2b and Phase 3 and additional evidence generated from other programs including from the real world. The characteristics presented reflect outcomes that may not be representative of pacibekitug. The results of past clinical trials may not be indicative of future results, and the results of future or ongoing clinical trials may not demonstrate some or any of the characteristics presented. MOA: mechanism of action. QoL: quality of life. TED: thyroid eye disease. SC: subcutaneous

Targeted points of differentiation
...resulting in leading market share, capitalizing on increasing Rx from endocrinologists and ophthalmologists

Pacibekitug ranked highest in future market share among 140 TED treaters in US¹

Impact on Rx if SC therapies are available¹

- I treat and manage moderate to severe active TED patients rather than referring out to another physician today
- As additional treatments become available for TED, including SC therapies, I will treat and manage moderate to severe active TED patients rather than referring out to another physician

TOURMALINE INVESTOR DAY

¹In a masked survey of future potential product entrants - HCP Quant Research with N = 60 General Ophthos, N = 40 Endos and N = 40 Oculoplastic Surgeons (February 2024). FcRn: neonatal fragment crystallizable receptor. IGF-1R: insulin-like growth factor 1 receptor. IL-6: interleukin-6. Rx: prescriptions. SC: subcutaneous. TED: thyroid eye disease.

spiriTED pivotal trial in first-line TED is ongoing

TOURMALINE | INVESTOR DAY

*Any patient who receives rescue therapy/intervention in Period A will not receive pacibekitug in Period B and will instead undergo follow-up only. ADA: anti-drug antibodies. CAS: clinical activity score. PD: pharmacodynamics. PK: pharmacokinetics. QoL: quality of life. SC: subcutaneous. TED: thyroid eye disease. TSI: thyroid stimulating immunoglobulin.

Key upcoming milestones

Disease focus	Indication	Milestone	Expected timing
Cardiovascular inflammation	ASCVD	TRANQUILITY Phase 2 topline data	Q2 2025
	AAA	Phase 2 trial start	Post-TRANQUILITY topline data
Autoimmune disease	TED	spiriTED Phase 2b topline data	H2 2025

Agenda

Carrying pacibekitug momentum into 2025	Sandeep Kulkarni, MD Co-Founder & CEO
Addressing residual inflammatory risk in CV diseases	Marc P. Bonaca, MD, MPH University of Colorado CPC Clinical Research
Pioneering the next frontier in CV with IL-6 inhibition	Emil deGoma, MD SVP, Medical Research
Pacibekitug's practice-changing potential in CV	Gerhard Hagn SVP, Head of Commercial & BD
Confirming pacibekitug's best-in-disease opportunity in TED	Gerhard Hagn SVP, Head of Commercial & BD
Q&A	